Fuzzy least squares projection twin support vector machines for class imbalance learning

نویسندگان

چکیده

In this paper, we propose a novel fuzzy least squares projection twin support vector machines for class imbalance learning (FLSPTSVM-CIL). Unlike machine (TSVM) which solves two dual problems, solve modified primal formulations by solving systems of linear equations. The proposed FLSPTSVM-CIL model seeks directions such that the samples classes are well separated in projected space. To avoid singularity issues, incorporate an extra regularization term to make optimization problem positive definite. As real world data may be imbalanced, assign appropriate weights classifier is not biased towards majority class. statistical analysis and experimental results on publicly available UCI benchmark datasets show performs better as compared baseline models. applications datasets, performed classification Alzheimer’s disease breast cancer patients. Experimental generalization performance patients mild cognitive impairment versus subjects

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fuzzy Least Squares Twin Support Vector Machines

Least Squares Twin Support Vector Machine (LSTSVM) is an extremely efficient and fast version of SVM algorithm for binary classification. LSTSVM combines the idea of Least Squares SVM and Twin SVM in which two nonparallel hyperplanes are found by solving two systems of linear equations. Although, the algorithm is very fast and efficient in many classification tasks, it is unable to cope with tw...

متن کامل

Feature selection for least squares projection twin support vector machine

In this paper, we propose a new feature selection approach for the recently proposed Least Squares Projection Twin Support Vector Machine (LSPTSVM) for binary classification. 1-norm is used in our feature selection objective so that only non-zero elements in weight vectors will be chosen as selected features. Also, the Tikhonov regularization term is incorporated to the objective of our approac...

متن کامل

Least Squares Twin Support Vector Machine for Multi-Class Classification

Twin support vector machine (TWSVM) was initially designed for binary classification. However, real-world problems often require the discrimination more than two categories. To tackle multi-class classification problem, in this paper, a multiple least squares twin support vector machine is proposed. Our Multi-LSTSVM solves K quadratic programming problems (QPPs) to obtain K hyperplanes, each pr...

متن کامل

Fuzzy least squares support vector machines for multiclass problems

In least squares support vector machines (LS-SVMs), the optimal separating hyperplane is obtained by solving a set of linear equations instead of solving a quadratic programming problem. But since SVMs and LS-SVMs are formulated for two-class problems, unclassifiable regions exist when they are extended to multiclass problems. In this paper, we discuss fuzzy LS-SVMs that resolve unclassifiable ...

متن کامل

Active Learning for Sparse Least Squares Support Vector Machines

For least squares support vector machine (LSSVM) the lack of sparse, while the standard sparse algorithm exist a problem that it need to mark all of training data. We propose an active learning algorithm based on LSSVM to solve sparse problem. This method first construct a minimum classification LSSVM, and then calculate the uncertainty of the sample, select the closest category to mark the sam...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Applied Soft Computing

سال: 2021

ISSN: ['1568-4946', '1872-9681']

DOI: https://doi.org/10.1016/j.asoc.2021.107933